Topological percolation on hyperbolic simplicial complexes
نویسندگان
چکیده
منابع مشابه
On Topological Minors in Random Simplicial Complexes
Simplicial Complexes. A (finite abstract) simplicial complex is a finite set system that is closed under taking subsets, i.e., F ⊂ H ∈ X implies F ∈ X. The sets F ∈ X are called faces of X. The dimension of a face F is dim(F ) = |F | − 1. The dimension of X is the maximal dimension of any face. A k-dimensional simplicial complex will also be called a k-complex.
متن کاملTopological approximation by small simplicial complexes
Given a point-cloud dataset sampled from an underlying geometric space X, it is often desirable to build a simplicial complex S approximating the geometric or topological structure of X. For example, recent techniques in automatic feature location depend on the ability to estimate topological invariants of X. These calculations can be prohibitively expensive if the number of cells in the approx...
متن کاملConstructing Simplicial Complexes over Topological Spaces
The first step in topological data analysis is often the construction of a simplicial complex. This complex approximates the lost topology of a sampled point set. Current techniques often assume that the input is embedded in a metric – often Euclidean – space, and make significant use of the underlying geometry for efficient computation. Consequently, these techniques do not extend to non-Eucli...
متن کاملFlows on Simplicial Complexes
Given a graph G, the number of nowhere-zero Zq-flows φG(q) is known to be a polynomial in q. We extend the definition of nowhere-zero Zq-flows to simplicial complexes ∆ of dimension greater than one, and prove the polynomiality of the corresponding function φ∆(q) for certain q and certain subclasses of simplicial complexes. Résumé. Et́ant donné une graphe G, on est connu que le nombre de Zq-flot...
متن کاملA duality on simplicial complexes
The usual definition of finite simplicial complex is a set of non-empty subsets of a finite set, closed under non-empty subset formation. For our purposes here, we will omit the non-emptiness and define a finite simplicial complex to be a down-closed subset of the set of subsets of a finite set. We can, and will suppose that the finite set is the integers 0,. . . ,N . We will denote by K the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2018
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.98.052308